Course Description
Learn how to develop and understand customer gear drive application specifications and target performance expectations. Review, calculate and select basic gear terminology variables and design parameters which define tooth bending and contact rating safety factors on two real life examples. Learn how to fit new gear designs and ratios into existing center distance. Use commercially available software to calculate and optimize gear set power density. Discuss time and cost of more than 20 other gear drive component functions and drive development steps through prototypes to shipment of compliant assembled production drives. There will be an opportunity to discuss gear design challenges which may be unique to participant industries.

It is recommended that you spend a minimum of 1 hour reading and reviewing the material each day.

Who Should Attend
This course would be of interest to high level gear grind operators, inspectors and quality assurance people who need to better understand why and how gear designs are optimized and how to interpret non-standard gear geometry. They can also gain insight on how improper finishing techniques can contribute to pre-mature gear failures. Entry level gear designers, process and manufacturing engineers can develop a basic understanding of gear geometry terms and variables. Gear manufacturing project managers can develop a better understanding of time required to design and optimize a gearset that is cost effective and meets or exceeds application expectations.

Learning Objectives

• Discuss aspects of gear tooth fatigue loading and typical failure modes as a basis for gear designs which exceed target design fatigue life
• Understand the various form of drive loads
 o Prime movers and suggested Safety Factors
 o Constant load applications
 o Variable load/duty cycle applications
• Ability to start with customer supplied gear drive application specification and develop an optimized gear design which meets or exceeds application and performance requirements
• Review gear geometry terminology and design optimization variables beyond information available in Machinery’s Handbook, apply optimization tools currently used in industry
 o Geometry factors – NDP, NPA, Helix Angle, Tooth Size
 o Performance variables – Profile Shift, Material, Heat Treatment, Accuracy, High Contact Ratio gear geometry
 o Rating factors – Tooth Bending S. F., Tooth Contact S. F., Micro Pitting S. F.
 o Additional performance enhancing processes – shot peen, isotropic finishing
• Learn how to fit a new gear ratio into existing housing and center distance
• This course is focused on gear design, but reviews functionality of over 20 related drive components and design related processes
• Apply design tools and gear performance enhancements to optimize
 o Rating
 o Operating noise level
 o Efficiency
 o Gear mesh contact
 o Lubrication
• Discuss gear drive design process steps, time, and costs from receipt of customer application specifications through design, prototype development/testing to manufacturing and shipping production units which meet or exceed customer expectations
• Work through two real life examples developing optimized spur and helical gearsets which exceed customer application specifications

Required Textbooks (Provided by AGMA)
Design Basics of Spur and Helical Gears manual by Terry Klaves.

COURSE OUTLINE

- **Basic Gear Design – Overview**
 - Factors effecting gear tooth bending and contact fatigue lives
 - Defining applied load, torque, speed, horsepower, target design life
 - Example of gear drive application data sheet/specification
 - Define gear geometry terms
 - Review gear accuracy for AGMA and ISO accuracy standards
 - Review how material and heat treat allowable stresses affect tooth bending and contact fatigue
- **Basic Gear Design – Application**
 - Shaft orientation
 - Gear drive requirements
 - Gear drive ratio
 - Work with new target center distance or drive with existing center distance
 - Discuss various prime movers, service factors and torsional vibration
- **Basic Gear Design – Design Variables**
 - Gear terms, variables and actual example design
 - Geometry – calculated variables
 - Gear rating calculation
 - Design for manufacturability
 - Design/rating optimization for max power density and least cost
 - Performance optimization for application critical parameters
- **Develop Hypothetical Optimized Gearing for Sample Application**
 - Run rating calculations on commercially available software
 - Iterate design variables to optimize tooth bending strength
 - Iterate design variables to optimize tooth contact strength
 - Iterate design variables to optimize operating noise levels
 - Iterate design variables to optimize operating efficiency
- **Special Surface Treatments**
 - Shot peening
 - Isotropic finishing
 - Probability of wear
Lubrication parameters
Contact analysis to improve loaded tooth contact
Review, Examples, Discussion

STUDENT FEEDBACK AND GRADING PROCEDURES

Assignments
Assignments and learning activities are given and directed at the discretion of the instructor.

COURSE MANAGEMENT

Weather Delays and Cancelations
We will communicate any cancellations, delays or other concerns for safety prior to class via email, voicemail, and/or text message. Please be sure that we have all pertinent contact information as you travel to your class location.

Attendance for Domestic and International Students
Please be mindful that these are short, accelerated courses. Attendance is extremely important. If you are going to be absent from any class day, please contact the course coordinator. Rosemarie Bundoc, Education Manager, bundoc@agma.org or Stephanie Smialek, Education Coordinator, smialek@agma.org

Plagiarism, Cheating and other types of Misconduct
Plagiarism\(^1\), cheating and other types of misconduct are unacceptable.

Students with Disabilities
Students requiring assistance and accommodation should complete the Special Accommodation Request form and submit it to Stephanie Smialek, Education Coordinator, at smialek@agma.org. She can be reached at 703-838-0069.

Grievance Procedures
Students who have concerns about the class are encouraged to contact Stephanie Smialek, Education Coordinator, at smialek@agma.org or 703-838-0069.

Outline Changes
The instructor reserves the right to modify the outline during the course of the class.

LEARNING AND OTHER RESOURCES

Links for writing resources:
- grammar.ccc.commnet.edu/grammar
- www.merriam-webster.com

Links for Math resources:
- www.sosmath.com
- Khan Academy on www.youtube.com

\(^1\) Plagiarism is defined as "the use or close imitation of the language and thoughts of another author and the representation of them as one's own original work."
Links for time management, study skills and note taking resources:
 • www.mindtools.com
 • www.testakingtips.com

Links for career resources:
 • https://www.agma.org/newsroom/jobs/

Industry News:
 • https://www.agma.org/newsroom/industry-news/