INSTRUCTORS:
Raymond J. Drago
Email: geardoctor@verzion.net
Steve Cymbala
Email: steve.cymbala@comcast.net

COURSE INFORMATION

Course Description
Learn and define the concept of epicyclic gearing including some basic history and the differences among simple planetary gear systems, compound planetary gear systems and star drive gear systems. Cover concepts on the arrangement of the individual components including the carrier, sun, planet, ring and star gears and the rigid requirements for the system to perform properly. Critical factors such as load sharing among the planet or star gears, sequential loading, equal planet/star spacing, relations among the numbers of teeth on each element, calculation of the maximum and optimum number of planet/star gears for a specific system will be covered. Provides an in-depth discussion of the methodology by which noise and vibration may be optimized for such systems and load sharing guidelines for planet load sharing.

It is recommended that you spend a minimum of 1 hour reading and reviewing the material each day.

Learning Objectives:

- Restate exactly what makes a gear system an epicyclic system
- Calculate the total reduction ratio of an epicyclic system and that of a star system.
- Identify differences and similarities between split power systems and true epicyclic systems.
- Recognize when the use of a star drive system is preferred over a planetary system.
- Understand the importance of equal planet/star gear spacing and how a system be designed with unequal planet spacing.
- Interpret how the numbers of teeth selected for the individual gears in an epicyclic or star drive gear system affect the noise and vibration characteristics of the system.
- Identify are the advantages of selecting odd numbers of teeth for the planet/star gears?
- Evaluate the numbers of teeth on the sun, planet and internal ring gear not arbitrary and what are the relations that must be maintained among these tooth numbers and why
- Explain how the design of the carrier affects the overall performance of these complex systems
- Determine how does input speed affect the design of an epicyclic system and why are the speed concerns different for epicyclic and star drive systems
- Restate how the selection of the “fixed” member in a planetary system affect the ratio and relative rotation directions of the input and output shafts?
- Understand the design and use of load balancing systems including floating sun gears, and floating ring gears.
Required Textbooks (Provided by AGMA)

COURSE OUTLINE

STUDENT FEEDBACK AND GRADING PROCEDURES

Assignments
Assignments and learning activities are given and directed at the discretion of the instructor.

COURSE MANAGEMENT

Weather Delays and Cancelations
We will communicate any cancellations, delays or other concerns for safety prior to class via email, voicemail, and/or text message. Please be sure that we have all pertinent contact information as you travel to your class location.

Attendance for Domestic and International Students
Please be mindful that these are short, accelerated courses. Attendance is extremely important. If you are going to be absent from any class day, please contact the course coordinator. Casandra Blassingame, Director, blassingame@agma.org or Kellyanne Broom, Coordinator, broom@agma.org.

Plagiarism, Cheating and other types of Misconduct
Plagiarism\(^1\), cheating and other types of misconduct are unacceptable.

Students with Disabilities
Students requiring assistance and accommodation should complete the Special Accommodation Request form and submit it to Kellyanne Broom at broom@agma.org. She can be reached at 703-838-0069.

Grievance Procedures
Students who have concerns about the class are encouraged to contact Casandra Blassingame, Director of Education at blassingame@agma.org or 703-838-0055.

Outline Changes
The instructor reserves the right to modify the outline during the course of the class.

\(^1\) Plagiarism is defined as “the use or close imitation of the language and thoughts of another author and the representation of them as one’s own original work.”
LEARNING AND OTHER RESOURCES

Links for writing resources:
• grammar.ccc.commnet.edu/grammar
• www.merriam-webster.com

Links for Math resources:
• www.sosmath.com
• Khan Academy on www.youtube.com

Links for time management, study skills and note taking resources:
• www.mindtools.com
• www.testakingtips.com

Links for career resources:
• https://www.agma.org/newsroom/jobs/

Industry News:
• https://www.AGMA.org/newsroom/industry-news/